Funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3, Theme 10.
Kunova, A., Pinna C., Ghosh S., Dozio D., Pizzatti, C., Princiotto, S., Cortesi, P., Dallavalle, S., & Pinto, A.
ACS Agricultural Science & Technology, 2024,4, 43−50This article is licensed under CC-BY 4.0
Fungi are among the greatest biotic threats to agricultural and food security. Intensive monoculture cropping and resistance to single-site fungicides in plant pathogens urge the discovery and development of novel compounds that possibly interfere with essential cellular processes in multiple ways. In this article, we describe our recent efforts addressed to the identification of natural compounds as multitarget biofungicides. A set of natural monomeric and dimeric compounds belonging to the class of stilbenoids were synthesized and tested against wild-type (WT) and strobilurin-resistant (RES) strains of Pyricularia oryzae, one of the most dangerous fungal phytopathogens. Monomers deoxyrhapontigenin, pinostilbene, and DMHS showed inhibitory activity higher than 40%, with deoxyrhapontigenin having the highest activity on mycelial growth (60–80% inhibition) on both WT and RES P. oryzae strains. Furthermore, we designed and synthesized a set of molecules having a nature-derived stilbene fragment merged with the pharmacophoric portion of strobilurins, namely, a β-methoxyacrylate moiety. We identified two molecules with activity comparable to the reference commercial fungicide azoxystrobin. However, low mycelium growth inhibition of resistant strains indicates that these compounds most likely retain the strobilurin-like mechanism of action. Overall, the results suggest that natural stilbenoids might be used as environmentally friendly biofungicides in rice blast management.