Article in Journal

Early detection of acrolein precursors in vegetable oils by using proton transfer reaction–mass spectrometry

Grosso, A. L., Morozova, K., Ferrentino, G., Biasioli, F., & Scampicchio, M.

Talanta, 2024, 270, 125513

  1. Home

  2. Research outputs

  3. Early detection of acrolein precursors in vegetable oils by using prot...

Acrolein is a toxic volatile compound derived from oxidative processes, that can be formed in foods during storage and cooking. This study employs proton transfer reaction mass spectrometry (PTR-MS) to detect acrolein precursors in vegetable oils by focusing on the m/z (mass-to-charge ratio) 57. To this purpose, hempseed, sesame, walnut, olive and linseed oils were stored for 168 h at 60 °C in presence of 2,2′-azobis(2-metilpropionitrile) (3 mM) radicals initiator. The evolution of m/z 57 by PTR-MS was also compared with traditional lipid oxidation indicators such as peroxide value, conjugated diene, oxygen consumption and, isothermal calorimetry. The obtained results were explained by the fatty acid composition and antioxidant capacity of the oils. Hempseed fresh oil presented a very low total volatile organic compounds (VOCs) intensity (5.6 kncps). Nonetheless, after storage the intensity increased ∼70 times. A principal component analysis (PCA) confirmed the potential of m/z 57 to differentiate fresh versus rancid hempseed oil sample. During an autoxidation experiment oils high in linolenic and linoleic acids showed higher m/z 57 emissions and shorter induction times: linseed oil (38 h) > walnut oil (47 h) > hempseed oil (80 h). The m/z 57 emission presented a high correlation coefficient with the total VOC signal (r > 0.95), conjugated dienes and headspace oxygen consumption. A PCA analysis showed a complete separation of the fresh oils on the first component (most significant) with the exception of olive oil. Walnut, hempseed and linseed oil were placed on the extreme right nearby total VOCs and m/z 57. The results obtained highlight the potential of PTR-MS for the early detection of oil autoxidation, serving as a quality control tool for potential acrolein precursor emissions, thereby enhancing food safety in the industry.

This research output is related to

Spoke 04

Food quality and nutrition

To push towards sustainable and tailored food and nutrition

Lead organisationUniMi

Spoke leaderPatrizia Riso

Referred to

Spoke 04
Research projectCO2MICS

Supercritical encapsulations of food micronutrients

Managed by

Principal investigators

Matteo Mario Scampicchio

Referred to

Spoke 04